40 research outputs found

    The Effect of Antibiotics on Urea Breakdown in Mice

    Full text link

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    Immunological Risk of Injectable Drug Delivery Systems

    Full text link

    Specific cellular stimulation in the primary immune response: experimental test of a quantized model.

    No full text
    Dose-response and dose-suppression curves have been measured for the primary immune response in mice, in vivo and in vitro, by using size-fractionated linear polymers of acrylamide substituted with hapten. The results are in general agreement with a simple theory based on the premise that the specific primary immunological response is quantized at some fundamental and limiting step, requiring a minimum number of linked antigen receptors for response

    Molecular determinants of immunogenicity: the immunon model of immune response.

    No full text
    The immunological response in vivo to a series of size-fractionated linear polymers of acrylamide substituted with hapten has been measured in mice. A sharp threshold was observed in immunogenic response elicited by various polymer preparations. All polymers with less than 12 to 16 appropriately spaced hapten groups per molecule were nonimmunogenic, while those polymers with greater than this number were fully immunogenic. The results lead to the conclusion that the immunological response at its most elementary level is quantized, i.e., a minimum specific number of antigen receptors (approximately 12 to 16) must be connected together as a spatially continuous cluster, an immunon, before an immunogenic signal is delivered to the responding cell

    Molecular determinants of immunogenicity: the immunon model of immune response.

    No full text
    corecore